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Abstract
Objectives: This study aimed to determine the accuracy of 
deep learning (DL) in kidney detection and differentiation of 
luminal emptying in pediatric diuretic renography.

Patients and methods: In the retrospective study, labeling 
was performed on 1,260 diuretic renography images of 
36 children with unilateral or bilateral hydronephrosis between 
January 2020 and December 2020. The Tensorflow Object 
Detection API was used to deploy object detection models. 
Sensitivity, precision, and F1 score were determined for the 
detection of the right or left kidney as an object. Supervised 
training was applied for the differentiation of filled and empty 
renal pelvis and calyxes.

Results: In 1,260 labeled renal images, the left or right kidney 
was detected by the machine with 94% sensitivity, 96% 
precision, and 95% F1 score. The accuracy for differentiation 
was 88% for filled renal pelvis and calyxes and 66% for empty 
renal pelvis and calyxes.

Conclusion: The machine using DL algorithms with a large 
data set training may differentiate the kidney, its location, and 
the contrast-filled lumen. Low contrast and unclear boundaries 
in an empty lumen may affect the quality of annotation. The 
DL model used in this study could be adapted to other urinary 
system pathologies in medical scans.

Keywords: Artificial intelligence, children, deep learning, diuretic 
renography, nuclear medicine.

Routine prenatal ultrasound screening of 
hydronephrosis increased the number of patients who 
have postnatal follow-up for differentiation of simple 
renal dilation from a more severe flow impairment 
related to the obstruction. A diagnostic tool is needed 
for interpretation of dilatation and the drainage 
problem to answer the question of whether the dilated 
luminal structure of the kidney is due to a significant 
obstruction or just due to a reservoir effect of the 
dilated cavity.

Deep learning (DL), as one of the main subsets of 
artificial intelligence (AI), uses ultrafast computing to 
rapidly optimize large multilayered datasets.[1] Image 
recognition is one of the cognitive functions of DL, 
and DL algorithms could help interpret images of 
surgical cases, including diagnostic medical scans, 
images of open surgery and endoscopic procedures, 
and pathology slides.[2-5]

In pediatric urology, urinary tract luminal 
pathologies such as obstruction, perforation, and 
reflux mostly need a radiological study with contrast 
material. Depending on the pathology, nuclear scans, 
X-ray studies, and computed tomography (CT) or 
magnetic resonance imaging (MRI) with contrast 
might be preferred. A well-demonstrated filling and 
emptying phase of the radionuclide or radiocontrast 
agent, location, and duration of the contrast stasis 
may affect the diagnostic process in urinary tract 
luminal pathologies.
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In the urinary system, diuretic renography is 
the method preferred to detect upper urinary tract 
obstruction associated with hydronephrosis. Injected 
radioisotope produces dynamic images of the kidneys. 
Renography is a noninvasive investigation of upper 
urinary tract obstruction, and it was first studied 
during the 1970s.[6] Conventionally, the diagnosis of 
the obstruction using renography is based on a visual 
interpretation of renograms.[7,8] This conventional 
method depends on the readers' experience and 
needs a more accurate quantitative approach to 
differentiate upper urinary tract obstruction.[8] To 
prevent discordant interpretations, the method 
should be improved with the support of a quantitative 
technique that may also determine the severity level 
of the obstruction.

A DL model for radiological image recognition 
could be built for a specific surgical pathology. If the 
dataset continues to accumulate, this model continues 
to learn and progresses gradually. A well-constructed 
DL model that has a dynamic training process with 
new data supports the decision-making process of 
a physician, and this may prevent misinterpretation 
caused by interobserver and intraobserver variabilities 
in the assessment of a radiological investigation.

This study aimed to construct a DL model that 
could detect the kidney as an image, locate its 
anatomic position, and would be able to understand 
whether the lumen is empty or filled with a contrast 
agent. Accordingly, diuretic renography was preferred 
to evaluate the model’s ability to detect the kidney as 
the organ, differentiate the side as right or left, and 
differentiate empty or filled renal pelvis and calyxes 
(RPCs).

Patients and Methods
Patients who were admitted to the pediatric 

urology clinic of the Eskişehir Osmangazi 
University Faculty of Medicine with unilateral or 
bilateral hydronephrosis between January 2020 and 
December 2020 were included in the retrospective 
study. A diuretic renography was required for 
the differential diagnosis of ureteropelvic junction 
obstruction to distinguish dilated, nonobstructed 
systems from those with significant obstruction. A 
total of 2,088 renogram images of 36 patients were 
received from the Department of Nuclear Medicine. 
The renography was performed with the F+20 
protocol. Patients were hydrated and positioned 

supine with a gamma camera placed under the 
table. Following the radioisotope injection with 
10 mCi of DTPA (diethylenetriamine pentaacetate), 
data acquisition started. Twenty minutes after the 
administration of the tracer, the furosemide was 
injected. Serial 1-min images as a 64¥64 matrix 
were obtained for 29 min beginning from the start.

 A DL study was conducted on the renal images of 
29 frames of the left and right kidneys of each patient. 
Renal images of the patients who were operated 
before, the images showing poor renal function and 
urinary stasis in the ureter, and the images with an 
uncertainty label were excluded. In the 2,088 images 
of 36 patients, prespecified 1,260 renal images were 
annotated as the left or right side and as a filled or 
empty RPC.

The dataset was used to evaluate two different 
competencies of the machine. In the first part of 
the study, the aim was to evaluate the ability of the 
machine in the differentiation of the right and left 
kidneys in the different renography phases. Sensitivity, 
precision, and F1 score were found for the detection of 
the right or left kidney as an object. In the second part 
of the study, the renal images were classified into two 
groups. The images with a filled RPC were included 
in Group 1, while the images of empty RPC were in 
Group 2. The image recognition and differentiation 
performance of the machine for filled and empty RPC 
were tested.

The open-source Python programming language 
(Python 3.6.1; Python Software Foundation, 
Wilmington, DE, USA), convolutional neural network, 
and the Tensorflow Object Detection API were 
used for the model development. The training was 
performed on a computer equipped with 16 gigabytes 
of RAM and an NVIDIA GeForce GTX 1060Ti 
graphics card (NVIDIA, Santa Clara, CA, USA). 
Supervised training was used for the differentiation of 
filled and empty renal collecting systems labeled by a 
nuclear medicine radiologist and a pediatric urologist. 
For data augmentation during training, multiple 
image transformations were applied. A self-training 
was not used.

ResULts

In the first part of the study, the set with 1,260 
annotated renal images was separated into datasets, 
including 1,134 images for training and validation 
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and 126 for the test group. The Tensorf low 
Inception V2 Coco architecture with 85,000 epochs 
was applied (Figure 1). The kidney was detected by 
the machine with side differentiation as left or right 
kidney with 94% sensitivity, 96% precision, and 95% 
F1 score.

In the second part of the study, the number of 
the renal image labeled was 638 for Group 1 and 358 
for Group 2. The set was separated into datasets for 
training and validation (600 images with 300 from 
each group) and for testing (116 images with 58 from 
each group). The learning rate was 0.01, the epoch 
was 20,000, the architecture was the Tensorflow 
Inception V3, and the batch size was 100. Following 
the training, the test groups with 116 images had 
88% accuracy for Group 1 and 66% for Group 2.

disCUssion

Artificial neural networks (ANNs) are 
computational systems having a set of 
interconnected simple processing elements that 
take the input, respond dynamically, and process 
the information.[9,10] Data could be introduced to 
ANNs by supervised, unsupervised, or reinforced 
methods.[9,11] Training is needed to obtain good 
accuracy. Deep learning models are hierarchical 
ANNs with multiple layers and are able to learn 
representations of data with increasing levels of 
abstraction starting from the input data[12] The 
chance of overfitting due to the increased number 
of network layers in ANNs decreased with the 
implementation of DL algorithms. The basic DL 
architecture has an input layer, many hidden 
layers responding to different features of the 

image (e.g., shape or edges), and an output layer. 
Deep learning, compared to other subtypes of AI, 
has an autodidactic quality in image recognition 
that depends on the number of layers and is 
determined by the data itself.[1] In our study, we 
used convolutional neural network, which is a type 
of DL architecture.

A DL model for image recognition may use 
supervised learning with labeled input data or 
unsupervised learning without labeled data. In 
medical studies, unsupervised learning has been 
rarely applied, and most of the DL models for image 
recognition have used supervised learning. This study 
also used supervised learning. In our DL model, the 
nuclear renogram images were annotated as the left 
or right side and as a filled or an empty RPC, and then 
the model was trained.

Several factors cause difficulties in the 
radiological and nuclear medicine investigations 
and the interpretation of the medical scans 
in children. Difficulties in cooperation and 
immobilization, problems of ergonomics due 
to the age and size of the patient, need for 
radiation protection, and the variation in uptake 
and excretion of radiopharmaceuticals are the 
challenges in children. Those limitations may 
cause misinterpretation in the evaluation of 
medical scans in children. Advances in AI and 
DL can help reduce diagnostic and management 
errors and malpractice that are inevitable in 
human clinical practice. Deep learning models 
may improve and enhance the efficiency of the 
assessment of medical scans and support the 
clinical decision process by developing better 
image recognition and object detection.

Figure 1. Tensorflow inception implementation.
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The DTPA renogram images of the patients 
who had hydronephrosis were used to train our 
DL model. Diuretic renography was required to 
differentiate hydronephrosis with obstruction from 
nonobstructive hydronephrosis. This diagnostic 
modality was selected to test the performance of 
DL on image recognition of luminal organs and test 
the potential and limitations of the machine in the 
detection of a filled or empty lumen. In the first 
part of the study, following the training with 1,134 
images, the model was able to find the kidney and 
differentiate the side as left or right kidney with 96% 
precision. The model was able to detect the kidney 
with high accuracy regardless of whether the RPC 
lumen was empty or filled with the radiolabeled 
agent. This finding may suggest that following the 
annotation by experienced physicians and training 
with a good number of input images, DL algorithms 
may detect and define the side and location of the 
organ. If the model was trained well, regardless of 
whether RPC has contrast or is empty, the kidney 
could be detected by the machine. The present DL 
model was successful in determining the lumen of 
RPC filled with the radiolabeled agent with 88% 
accuracy and was able to catch a filled lumen in 
different phases of the renogram series having 
29 images.

The accuracy of describing an empty RPC lumen 
was 66% in our study. This was the weakness of 
the model, which will need to be improved by 
future research. Medical images are often rendered 
in grayscale, which may cause difficulty in 
interpretation[13] Medical image quality is normally 
characterized in terms of contrast, noise, and 
resolution[14] The images having blur, brightness, 
defect in detail visibility, and missing pixels may have 
a significant influence on the DL model performance. 
Detail visibility is not observed appropriately in some 
of the radiological and nuclear medicine studies. 
In our model, 66% accuracy in the prediction of an 
empty RPC may suggest that defining and labeling 
the variations of images showing an empty RPC was 
not good enough with the conventional annotation 
method we used.

In our study, empty RPC lumens had low tissue 
contrast and unclear boundaries. As an image, if the 
target organ has location variance, low tissue contrast, 
and unclear boundaries, the quality of annotation 
decreases. Manual segmentation or object detection 
performed on such images is prone to errors due to 

the low quality of the images, difficulty in hand-eye 
coordination, and operator interpretation. These 
errors directly affect the success of the model. Noval 
manual annotation methods have been reported. As 
one of these methods, the patch-based annotation 
extracts sequential patches with four or six strides 
along 16 rays extending from the inside of the 
object to the outside[15] A sequence of patches along 
a certain ray is viewed as a single training sample. 
This approach may provide better labeling compared 
to the image-based method for medical images 
with low tissue contrast and unclear boundaries. 
Automatic image annotation platforms could be 
developed for better labeling in such challenging 
medical images.[16,17]

Although DL algorithms for image recognition 
have been shown to surpass the human accuracy 
rate in several reports and show some promise 
in the evaluation of medical scans.[1,2,18] However, 
they are still far from demonstrating very high 
and reproducible machine accuracy in medicine. 
Physicians who need AI as an assistant to interpret 
medical scans and other visual medical data should 
learn the basic principles of DL and be involved in DL 
studies on medical image recognition. There are still 
few studies that have clinical implications. Medical 
doctors, engineers, and data scientists should work 
together to develop efficient DL models that could 
be accepted and adopted in the real-world clinical 
environment.

There are a few limitations in this study. The first 
is that it is a single-center study. Secondly, it is not 
a follow-up study and does not provide information 
about the long-term results of the patients.

In conclusion, the machine using DL algorithms 
with a large data set training may differentiate the 
kidney, its location, and the contrast-filled lumen. 
Low contrast and unclear boundaries in an empty 
lumen may affect the quality of annotation. The DL 
model used in this study could be adapted to other 
urinary system pathologies in medical scans.
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